36. Valid Sudoku #
题目 #
Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:
- Each row must contain the digits
1-9
without repetition. - Each column must contain the digits
1-9
without repetition. - Each of the 9
3x3
sub-boxes of the grid must contain the digits1-9
without repetition.
A partially filled sudoku which is valid.
The Sudoku board could be partially filled, where empty cells are filled with the character '.'
.
Example 1:
Input:
[
["5","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
Output: true
Example 2:
Input:
[
["8","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
Output: false
Explanation: Same as Example 1, except with the 5 in the top left corner being
modified to 8. Since there are two 8's in the top left 3x3 sub-box, it is invalid.
Note:
- A Sudoku board (partially filled) could be valid but is not necessarily solvable.
- Only the filled cells need to be validated according to the mentioned rules.
- The given board contain only digits
1-9
and the character'.'
. - The given board size is always
9x9
.
题目大意 #
判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。
- 数字 1-9 在每一行只能出现一次。
- 数字 1-9 在每一列只能出现一次。
- 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。
解题思路 #
- 给出一个数独的棋盘,要求判断这个棋盘当前是否满足数独的要求:即行列是否都只包含 1-9,每个九宫格里面是否也只包含 1-9 。
- 注意这题和第 37 题是不同的,这一题是判断当前棋盘状态是否满足数独的要求,而第 37 题是要求求解数独。本题中的棋盘有些是无解的,但是棋盘状态是满足题意的。
代码 #
package leetcode
import "strconv"
// 解法一 暴力遍历,时间复杂度 O(n^3)
func isValidSudoku(board [][]byte) bool {
// 判断行 row
for i := 0; i < 9; i++ {
tmp := [10]int{}
for j := 0; j < 9; j++ {
cellVal := board[i][j : j+1]
if string(cellVal) != "." {
index, _ := strconv.Atoi(string(cellVal))
if index > 9 || index < 1 {
return false
}
if tmp[index] == 1 {
return false
}
tmp[index] = 1
}
}
}
// 判断列 column
for i := 0; i < 9; i++ {
tmp := [10]int{}
for j := 0; j < 9; j++ {
cellVal := board[j][i]
if string(cellVal) != "." {
index, _ := strconv.Atoi(string(cellVal))
if index > 9 || index < 1 {
return false
}
if tmp[index] == 1 {
return false
}
tmp[index] = 1
}
}
}
// 判断 9宫格 3X3 cell
for i := 0; i < 3; i++ {
for j := 0; j < 3; j++ {
tmp := [10]int{}
for ii := i * 3; ii < i*3+3; ii++ {
for jj := j * 3; jj < j*3+3; jj++ {
cellVal := board[ii][jj]
if string(cellVal) != "." {
index, _ := strconv.Atoi(string(cellVal))
if tmp[index] == 1 {
return false
}
tmp[index] = 1
}
}
}
}
}
return true
}
// 解法二 添加缓存,时间复杂度 O(n^2)
func isValidSudoku1(board [][]byte) bool {
rowbuf, colbuf, boxbuf := make([][]bool, 9), make([][]bool, 9), make([][]bool, 9)
for i := 0; i < 9; i++ {
rowbuf[i] = make([]bool, 9)
colbuf[i] = make([]bool, 9)
boxbuf[i] = make([]bool, 9)
}
// 遍历一次,添加缓存
for r := 0; r < 9; r++ {
for c := 0; c < 9; c++ {
if board[r][c] != '.' {
num := board[r][c] - '0' - byte(1)
if rowbuf[r][num] || colbuf[c][num] || boxbuf[r/3*3+c/3][num] {
return false
}
rowbuf[r][num] = true
colbuf[c][num] = true
boxbuf[r/3*3+c/3][num] = true // r,c 转换到box方格中
}
}
}
return true
}