62. Unique Paths #
题目 #
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
题目大意 #
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径?
解题思路 #
- 这是一道简单的 DP 题。输出地图上从左上角走到右下角的走法数。
- 由于机器人只能向右走和向下走,所以地图的第一行和第一列的走法数都是 1,地图中任意一点的走法数是
dp[i][j] = dp[i-1][j] + dp[i][j-1]
代码 #
package leetcode
func uniquePaths(m int, n int) int {
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, m)
}
for i := 0; i < n; i++ {
for j := 0; j < m; j++ {
if i == 0 || j == 0 {
dp[i][j] = 1
continue
}
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
return dp[n-1][m-1]
}