127. Word Ladder #
题目 #
Given two words (beginWord and endWord), and a dictionary’s word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
- Only one letter can be changed at a time.
- Each transformed word must exist in the word list. Note that beginWord is not a transformed word.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
- You may assume no duplicates in the word list.
- You may assume beginWord and endWord are non-empty and are not the same.
Example 1:
Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5
Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Example 2:
Input:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
Output: 0
Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.
题目大意 #
给定两个单词(beginWord 和 endWord)和一个字典,找到从 beginWord 到 endWord 的最短转换序列的长度。转换需遵循如下规则:
- 每次转换只能改变一个字母。
- 转换过程中的中间单词必须是字典中的单词。
说明:
- 如果不存在这样的转换序列,返回 0。
- 所有单词具有相同的长度。
- 所有单词只由小写字母组成。
- 字典中不存在重复的单词。
- 你可以假设 beginWord 和 endWord 是非空的,且二者不相同。
解题思路 #
- 这一题要求输出从
beginWord
变换到endWord
最短变换次数。可以用 BFS,从beginWord
开始变换,把该单词的每个字母都用'a'~'z'
变换一次,生成的数组到wordList
中查找,这里用 Map 来记录查找。找得到就入队列,找不到就输出 0 。入队以后按照 BFS 的算法依次遍历完,当所有单词都len(queue)<=0
出队以后,整个程序结束。 - 这一题题目中虽然说了要求找到一条最短的路径,但是实际上最短的路径的寻找方法已经告诉你了:
- 每次只变换一个字母
- 每次变换都必须在
wordList
中
所以不需要单独考虑何种方式是最短的。
代码 #
package leetcode
func ladderLength(beginWord string, endWord string, wordList []string) int {
wordMap, que, depth := getWordMap(wordList, beginWord), []string{beginWord}, 0
for len(que) > 0 {
depth++
qlen := len(que)
for i := 0; i < qlen; i++ {
word := que[0]
que = que[1:]
candidates := getCandidates(word)
for _, candidate := range candidates {
if _, ok := wordMap[candidate]; ok {
if candidate == endWord {
return depth + 1
}
delete(wordMap, candidate)
que = append(que, candidate)
}
}
}
}
return 0
}
func getWordMap(wordList []string, beginWord string) map[string]int {
wordMap := make(map[string]int)
for i, word := range wordList {
if _, ok := wordMap[word]; !ok {
if word != beginWord {
wordMap[word] = i
}
}
}
return wordMap
}
func getCandidates(word string) []string {
var res []string
for i := 0; i < 26; i++ {
for j := 0; j < len(word); j++ {
if word[j] != byte(int('a')+i) {
res = append(res, word[:j]+string(int('a')+i)+word[j+1:])
}
}
}
return res
}