229. Majority Element II #
题目 #
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋
times.
Note: The algorithm should run in linear time and in O(1) space.
Example 1:
Input: [3,2,3]
Output: [3]
Example 2:
Input: [1,1,1,3,3,2,2,2]
Output: [1,2]
题目大意 #
给定一个大小为 n 的数组,找出其中所有出现超过 ⌊ n/3 ⌋ 次的元素。说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1)。
解题思路 #
- 这一题是第 169 题的加强版。Boyer-Moore Majority Vote algorithm 算法的扩展版。
- 题目要求找出数组中出现次数大于
⌊ n/3 ⌋
次的数。要求空间复杂度为 O(1)。简单题。 - 这篇文章写的不错,可参考: https://gregable.com/2013/10/majority-vote-algorithm-find-majority.html
代码 #
package leetcode
// 解法一 时间复杂度 O(n) 空间复杂度 O(1)
func majorityElement229(nums []int) []int {
// since we are checking if a num appears more than 1/3 of the time
// it is only possible to have at most 2 nums (>1/3 + >1/3 = >2/3)
count1, count2, candidate1, candidate2 := 0, 0, 0, 1
// Select Candidates
for _, num := range nums {
if num == candidate1 {
count1++
} else if num == candidate2 {
count2++
} else if count1 <= 0 {
// We have a bad first candidate, replace!
candidate1, count1 = num, 1
} else if count2 <= 0 {
// We have a bad second candidate, replace!
candidate2, count2 = num, 1
} else {
// Both candidates suck, boo!
count1--
count2--
}
}
// Recount!
count1, count2 = 0, 0
for _, num := range nums {
if num == candidate1 {
count1++
} else if num == candidate2 {
count2++
}
}
length := len(nums)
if count1 > length/3 && count2 > length/3 {
return []int{candidate1, candidate2}
}
if count1 > length/3 {
return []int{candidate1}
}
if count2 > length/3 {
return []int{candidate2}
}
return []int{}
}
// 解法二 时间复杂度 O(n) 空间复杂度 O(n)
func majorityElement229_1(nums []int) []int {
result, m := make([]int, 0), make(map[int]int)
for _, val := range nums {
if v, ok := m[val]; ok {
m[val] = v + 1
} else {
m[val] = 1
}
}
for k, v := range m {
if v > len(nums)/3 {
result = append(result, k)
}
}
return result
}