441. Arranging Coins #
题目 #
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤
Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
Because the 4th row is incomplete, we return 3.
题目大意 #
你总共有 n 枚硬币,你需要将它们摆成一个阶梯形状,第 k 行就必须正好有 k 枚硬币。给定一个数字 n,找出可形成完整阶梯行的总行数。n 是一个非负整数,并且在32位有符号整型的范围内。
解题思路 #
- n 个硬币,按照递增的方式排列搭楼梯,第一层一个,第二层二个,……第 n 层需要 n 个硬币。问硬币 n 能够搭建到第几层?
- 这一题有 2 种解法,第一种解法就是解方程求出 X,
(1+x)x/2 = n
,即x = floor(sqrt(2*n+1/4) - 1/2)
,第二种解法是模拟。
代码 #
package leetcode
import "math"
// 解法一 数学公式
func arrangeCoins(n int) int {
if n <= 0 {
return 0
}
x := math.Sqrt(2*float64(n)+0.25) - 0.5
return int(x)
}
// 解法二 模拟
func arrangeCoins1(n int) int {
k := 1
for n >= k {
n -= k
k++
}
return k - 1
}