456. 132 Pattern #
题目 #
Given a sequence of n integers a1, a2, …, an, a 132 pattern is a subsequence ai, aj, ak such that i < j < k and ai < ak < aj. Design an algorithm that takes a list of n numbers as input and checks whether there is a 132 pattern in the list.
Note: n will be less than 15,000.
Example 1:
Input: [1, 2, 3, 4]
Output: False
Explanation: There is no 132 pattern in the sequence.
Example 2:
Input: [3, 1, 4, 2]
Output: True
Explanation: There is a 132 pattern in the sequence: [1, 4, 2].
Example 3:
Input: [-1, 3, 2, 0]
Output: True
Explanation: There are three 132 patterns in the sequence: [-1, 3, 2], [-1, 3, 0] and [-1, 2, 0].
题目大意 #
给定一个整数序列:a1, a2, …, an,一个 132 模式的子序列 ai, aj, ak 被定义为:当 i < j < k 时,ai < ak < aj。设计一个算法,当给定有 n 个数字的序列时,验证这个序列中是否含有 132 模式的子序列。注意:n 的值小于 15000。
解题思路 #
- 这一题用暴力解法一定超时
- 这一题算是单调栈的经典解法,可以考虑从数组末尾开始往前扫,维护一个递减序列
代码 #
package leetcode
import (
	"math"
)
// 解法一 单调栈
func find132pattern(nums []int) bool {
	if len(nums) < 3 {
		return false
	}
	num3, stack := math.MinInt64, []int{}
	for i := len(nums) - 1; i >= 0; i-- {
		if nums[i] < num3 {
			return true
		}
		for len(stack) != 0 && nums[i] > stack[len(stack)-1] {
			num3 = stack[len(stack)-1]
			stack = stack[:len(stack)-1]
		}
		stack = append(stack, nums[i])
	}
	return false
}
// 解法二 暴力解法,超时!
func find132pattern1(nums []int) bool {
	if len(nums) < 3 {
		return false
	}
	for j := 0; j < len(nums); j++ {
		stack := []int{}
		for i := j; i < len(nums); i++ {
			if len(stack) == 0 || (len(stack) > 0 && nums[i] > nums[stack[len(stack)-1]]) {
				stack = append(stack, i)
			} else if nums[i] < nums[stack[len(stack)-1]] {
				index := len(stack) - 1
				for ; index >= 0; index-- {
					if nums[stack[index]] < nums[i] {
						return true
					}
				}
			}
		}
	}
	return false
}