0478. Generate Random Point in a Circle

478. Generate Random Point in a Circle #

题目 #

Given the radius and x-y positions of the center of a circle, write a function randPoint which generates a uniform random point in the circle.

Note:

  1. input and output values are in  floating-point.
  2. radius and x-y position of the center of the circle is passed into the class constructor.
  3. a point on the circumference of the circle is considered to be in the circle.
  4. randPoint returns a size 2 array containing x-position and y-position of the random point, in that order.

Example 1:

Input: 
["Solution","randPoint","randPoint","randPoint"]
[[1,0,0],[],[],[]]
Output: [null,[-0.72939,-0.65505],[-0.78502,-0.28626],[-0.83119,-0.19803]]

Example 2:

Input: 
["Solution","randPoint","randPoint","randPoint"]
[[10,5,-7.5],[],[],[]]
Output: [null,[11.52438,-8.33273],[2.46992,-16.21705],[11.13430,-12.42337]]

Explanation of Input Syntax:

The input is two lists: the subroutines called and their arguments. Solution's constructor has three arguments, the radius, x-position of the center, and y-position of the center of the circle. randPoint has no arguments. Arguments are always wrapped with a list, even if there aren’t any.

题目大意 #

给定圆的半径和圆心的 x、y 坐标,写一个在圆中产生均匀随机点的函数 randPoint 。

说明:

  • 输入值和输出值都将是浮点数。
  • 圆的半径和圆心的 x、y 坐标将作为参数传递给类的构造函数。
  • 圆周上的点也认为是在圆中。
  • randPoint 返回一个包含随机点的x坐标和y坐标的大小为2的数组。

解题思路 #

  • 随机产生一个圆内的点,这个点一定满足定义 (x-a)^2+(y-b)^2 ≤ R^2,其中 (a,b) 是圆的圆心坐标,R 是半径。
  • 先假设圆心坐标在 (0,0),这样方便计算,最终输出坐标的时候整体加上圆心的偏移量即可。rand.Float64() 产生一个 [0.0,1.0) 区间的浮点数。-R ≤ 2 * R * rand() - R < R,利用随机产生坐标点的横纵坐标 (x,y) 与半径 R 的关系,如果 x^2 + y^2 ≤ R^2,那么说明产生的点在圆内。最终输出的时候要记得加上圆心坐标的偏移值。

代码 #

package leetcode

import (
	"math"
	"math/rand"
	"time"
)

type Solution struct {
	r float64
	x float64
	y float64
}

func Constructor(radius float64, x_center float64, y_center float64) Solution {
	rand.Seed(time.Now().UnixNano())
	return Solution{radius, x_center, y_center}
}

func (this *Solution) RandPoint() []float64 {
	/*
	   a := angle()
	   r := this.r * math.Sqrt(rand.Float64())
	   x := r * math.Cos(a) + this.x
	   y := r * math.Sin(a) + this.y
	   return []float64{x, y}*/
	for {
		rx := 2*rand.Float64() - 1.0
		ry := 2*rand.Float64() - 1.0
		x := this.r * rx
		y := this.r * ry
		if x*x+y*y <= this.r*this.r {
			return []float64{x + this.x, y + this.y}
		}
	}
}

func angle() float64 {
	return rand.Float64() * 2 * math.Pi
}

/**
 * Your Solution object will be instantiated and called as such:
 * obj := Constructor(radius, x_center, y_center);
 * param_1 := obj.RandPoint();
 */

⬅️上一页

下一页➡️

Calendar Apr 13, 2021
Edit Edit this page
本站总访问量:  次 您是本站第  位访问者