497. Random Point in Non-overlapping Rectangles #
题目 #
Given a list of non-overlapping axis-aligned rectangles rects
, write a function pick
which randomly and uniformily picks an integer point in the space covered by the rectangles.
Note:
- An integer point is a point that has integer coordinates.
- A point on the perimeter of a rectangle is included in the space covered by the rectangles.
i
th rectangle =rects[i]
=[x1,y1,x2,y2]
, where[x1, y1]
are the integer coordinates of the bottom-left corner, and[x2, y2]
are the integer coordinates of the top-right corner.- length and width of each rectangle does not exceed
2000
. 1 <= rects.length <= 100
pick
return a point as an array of integer coordinates[p_x, p_y]
pick
is called at most10000
times.
Example 1:
Input:
["Solution","pick","pick","pick"]
[[[[1,1,5,5]]],[],[],[]]
Output:
[null,[4,1],[4,1],[3,3]]
Example 2:
Input:
["Solution","pick","pick","pick","pick","pick"]
[[[[-2,-2,-1,-1],[1,0,3,0]]],[],[],[],[],[]]
Output:
[null,[-1,-2],[2,0],[-2,-1],[3,0],[-2,-2]]
Explanation of Input Syntax:
The input is two lists: the subroutines called and their arguments. Solution
's constructor has one argument, the array of rectangles rects
. pick
has no arguments. Arguments are always wrapped with a list, even if there aren’t any.
题目大意 #
给定一个非重叠轴对齐矩形的列表 rects,写一个函数 pick 随机均匀地选取矩形覆盖的空间中的整数点。
提示:
- 整数点是具有整数坐标的点。
- 矩形周边上的点包含在矩形覆盖的空间中。
- 第 i 个矩形 rects [i] = [x1,y1,x2,y2],其中 [x1,y1] 是左下角的整数坐标,[x2,y2] 是右上角的整数坐标。
- 每个矩形的长度和宽度不超过 2000。
- 1 <= rects.length <= 100
- pick 以整数坐标数组 [p_x, p_y] 的形式返回一个点。
- pick 最多被调用10000次。
输入语法的说明:
输入是两个列表:调用的子例程及其参数。Solution 的构造函数有一个参数,即矩形数组 rects。pick 没有参数。参数总是用列表包装的,即使没有也是如此。
解题思路 #
- 给出一个非重叠轴对齐矩形列表,每个矩形用左下角和右上角的两个坐标表示。要求
pick()
随机均匀地选取矩形覆盖的空间中的整数点。 - 这一题是第 528 题的变种题,这一题权重是面积,按权重(面积)选择一个矩形,然后再从矩形中随机选择一个点即可。思路和代码和第 528 题一样。
代码 #
package leetcode
import "math/rand"
// Solution497 define
type Solution497 struct {
rects [][]int
arr []int
}
// Constructor497 define
func Constructor497(rects [][]int) Solution497 {
s := Solution497{
rects: rects,
arr: make([]int, len(rects)),
}
for i := 0; i < len(rects); i++ {
area := (rects[i][2] - rects[i][0] + 1) * (rects[i][3] - rects[i][1] + 1)
if area < 0 {
area = -area
}
if i == 0 {
s.arr[0] = area
} else {
s.arr[i] = s.arr[i-1] + area
}
}
return s
}
// Pick define
func (so *Solution497) Pick() []int {
r := rand.Int() % so.arr[len(so.arr)-1]
//get rectangle first
low, high, index := 0, len(so.arr)-1, -1
for low <= high {
mid := low + (high-low)>>1
if so.arr[mid] > r {
if mid == 0 || so.arr[mid-1] <= r {
index = mid
break
}
high = mid - 1
} else {
low = mid + 1
}
}
if index == -1 {
index = low
}
if index > 0 {
r = r - so.arr[index-1]
}
length := so.rects[index][2] - so.rects[index][0]
return []int{so.rects[index][0] + r%(length+1), so.rects[index][1] + r/(length+1)}
}
/**
* Your Solution object will be instantiated and called as such:
* obj := Constructor(rects);
* param_1 := obj.Pick();
*/