674. Longest Continuous Increasing Subsequence #
题目 #
Given an unsorted array of integers nums
, return the length of the longest continuous increasing subsequence (i.e. subarray). The subsequence must be strictly increasing.
A continuous increasing subsequence is defined by two indices l
and r
(l < r
) such that it is [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]]
and for each l <= i < r
, nums[i] < nums[i + 1]
.
Example 1:
Input: nums = [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5] with length 3.
Even though [1,3,5,7] is an increasing subsequence, it is not continuous as elements 5 and 7 are separated by element
4.
Example 2:
Input: nums = [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2] with length 1. Note that it must be strictly
increasing.
Constraints:
0 <= nums.length <= 10^4
10^9 <= nums[i] <= 10^9
题目大意 #
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。
解题思路 #
- 简单题。这一题和第 128 题有区别。这一题要求子序列必须是连续下标,所以变简单了。扫描一遍数组,记下连续递增序列的长度,动态维护这个最大值,最后输出即可。
代码 #
package leetcode
func findLengthOfLCIS(nums []int) int {
if len(nums) == 0 {
return 0
}
res, length := 1, 1
for i := 1; i < len(nums); i++ {
if nums[i] > nums[i-1] {
length++
} else {
res = max(res, length)
length = 1
}
}
return max(res, length)
}
func max(a, b int) int {
if a > b {
return a
}
return b
}