785. Is Graph Bipartite? #
题目 #
Given an undirected graph
, return true
if and only if it is bipartite.
Recall that a graph is bipartite if we can split it’s set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: graph[i]
is a list of indexes j
for which the edge between nodes i
and j
exists. Each node is an integer between 0
and graph.length - 1
. There are no self edges or parallel edges: graph[i]
does not contain i
, and it doesn’t contain any element twice.
Example 1:Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
Note:
graph
will have length in range[1, 100]
.graph[i]
will contain integers in range[0, graph.length - 1]
.graph[i]
will not containi
or duplicate values.- The graph is undirected: if any element
j
is ingraph[i]
, theni
will be ingraph[j]
.
题目大意 #
给定一个无向图 graph,当这个图为二分图时返回 true。
graph 将会以邻接表方式给出,graph[i] 表示图中与节点i相连的所有节点。每个节点都是一个在 0 到 graph.length-1 之间的整数。这图中没有自环和平行边: graph[i] 中不存在 i,并且 graph[i] 中没有重复的值。
注意:
- graph 的长度范围为 [1, 100]。
- graph[i] 中的元素的范围为 [0, graph.length - 1]。
- graph[i] 不会包含 i 或者有重复的值。
- 图是无向的: 如果 j 在 graph[i] 里边, 那么 i 也会在 graph[j] 里边。
解题思路 #
- 判断一个无向图是否是二分图。二分图的定义:如果我们能将一个图的节点集合分割成两个独立的子集 A 和 B,并使图中的每一条边的两个节点一个来自 A 集合,一个来自 B 集合,我们就将这个图称为二分图。
- 这一题可以用 BFS、DFS、并查集来解答。这里是 DFS 实现。任选一个节点开始,把它染成红色,然后对整个图 DFS 遍历,把与它相连的节点并且未被染色的,都染成绿色。颜色不同的节点代表不同的集合。这时候还可能遇到第 2 种情况,与它相连的节点已经有颜色了,并且这个颜色和前一个节点的颜色相同,这就说明了该无向图不是二分图。可以直接 return false。如此遍历到所有节点都染色了,如果能染色成功,说明该无向图是二分图,返回 true。
代码 #
package leetcode
// DFS 染色,1 是红色,0 是绿色,-1 是未染色
func isBipartite(graph [][]int) bool {
colors := make([]int, len(graph))
for i := range colors {
colors[i] = -1
}
for i := range graph {
if !dfs(i, graph, colors, -1) {
return false
}
}
return true
}
func dfs(n int, graph [][]int, colors []int, parentCol int) bool {
if colors[n] == -1 {
if parentCol == 1 {
colors[n] = 0
} else {
colors[n] = 1
}
} else if colors[n] == parentCol {
return false
} else if colors[n] != parentCol {
return true
}
for _, c := range graph[n] {
if !dfs(c, graph, colors, colors[n]) {
return false
}
}
return true
}