851. Loud and Rich #
题目 #
In a group of N people (labelled 0, 1, 2, ..., N-1
), each person has different amounts of money, and different levels of quietness.
For convenience, we’ll call the person with label x
, simply “person x
”.
We’ll say that richer[i] = [x, y]
if person x
definitely has more money than person y
. Note that richer
may only be a subset of valid observations.
Also, we’ll say quiet = q
if person x has quietness q
.
Now, return answer
, where answer = y
if y
is the least quiet person (that is, the person y
with the smallest value of quiet[y]
), among all people who definitely have equal to or more money than person x
.
Example 1:
Input: richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0]
Output: [5,5,2,5,4,5,6,7]
Explanation:
answer[0] = 5.
Person 5 has more money than 3, which has more money than 1, which has more money than 0.
The only person who is quieter (has lower quiet[x]) is person 7, but
it isn't clear if they have more money than person 0.
answer[7] = 7.
Among all people that definitely have equal to or more money than person 7
(which could be persons 3, 4, 5, 6, or 7), the person who is the quietest (has lower quiet[x])
is person 7.
The other answers can be filled out with similar reasoning.
Note:
1 <= quiet.length = N <= 500
0 <= quiet[i] < N
, allquiet[i]
are different.0 <= richer.length <= N * (N-1) / 2
0 <= richer[i][j] < N
richer[i][0] != richer[i][1]
richer[i]
's are all different.- The observations in
richer
are all logically consistent.
题目大意 #
在一组 N 个人(编号为 0, 1, 2, …, N-1)中,每个人都有不同数目的钱,以及不同程度的安静(quietness)。为了方便起见,我们将编号为 x 的人简称为 “person x “。如果能够肯定 person x 比 person y 更有钱的话,我们会说 richer[i] = [x, y] 。注意 richer 可能只是有效观察的一个子集。另外,如果 person x 的安静程度为 q ,我们会说 quiet[x] = q 。现在,返回答案 answer ,其中 answer[x] = y 的前提是,在所有拥有的钱不少于 person x 的人中,person y 是最安静的人(也就是安静值 quiet[y] 最小的人)。
提示:
- 1 <= quiet.length = N <= 500
- 0 <= quiet[i] < N,所有 quiet[i] 都不相同。
- 0 <= richer.length <= N * (N-1) / 2
- 0 <= richer[i][j] < N
- richer[i][0] != richer[i][1]
- richer[i] 都是不同的。
- 对 richer 的观察在逻辑上是一致的。
解题思路 #
- 给出 2 个数组,richer 和 quiet,要求输出 answer,其中 answer = y 的前提是,在所有拥有的钱不少于 x 的人中,y 是最安静的人(也就是安静值 quiet[y] 最小的人)
- 由题意可知,
richer
构成了一个有向无环图,首先使用字典建立图的关系,找到比当前下标编号富有的所有的人。然后使用广度优先层次遍历,不断的使用富有的人,但是安静值更小的人更新子节点即可。 - 这一题还可以用拓扑排序来解答。将
richer
中描述的关系看做边,如果x > y
,则x
指向y
。将quiet
看成权值。用一个数组记录答案,初始时ans[i] = i
。然后对原图做拓扑排序,对于每一条边,如果发现quiet[ans[v]] > quiet[ans[u]]
,则ans[v]
的答案为ans[u]
。时间复杂度即为拓扑排序的时间复杂度为O(m+n)
。空间复杂度需要O(m)
的数组建图,需要O(n)
的数组记录入度以及存储队列,所以空间复杂度为O(m+n)
。
代码 #
func loudAndRich(richer [][]int, quiet []int) []int {
edges := make([][]int, len(quiet))
for i := range edges {
edges[i] = []int{}
}
indegrees := make([]int, len(quiet))
for _, edge := range richer {
n1, n2 := edge[0], edge[1]
edges[n1] = append(edges[n1], n2)
indegrees[n2]++
}
res := make([]int, len(quiet))
for i := range res {
res[i] = i
}
queue := []int{}
for i, v := range indegrees {
if v == 0 {
queue = append(queue, i)
}
}
for len(queue) > 0 {
nexts := []int{}
for _, n1 := range queue {
for _, n2 := range edges[n1] {
indegrees[n2]--
if quiet[res[n2]] > quiet[res[n1]] {
res[n2] = res[n1]
}
if indegrees[n2] == 0 {
nexts = append(nexts, n2)
}
}
}
queue = nexts
}
return res
}