923. 3Sum With Multiplicity #
题目 #
Given an integer array A, and an integer target, return the number of tuples i, j, k such that i < j < k and A[i] + A[j] + A[k] == target.
As the answer can be very large, return it modulo 10^9 + 7.
Example 1:
Input: A = [1,1,2,2,3,3,4,4,5,5], target = 8
Output: 20
Explanation:
Enumerating by the values (A[i], A[j], A[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.
Example 2:
Input: A = [1,1,2,2,2,2], target = 5
Output: 12
Explanation:
A[i] = 1, A[j] = A[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.
Note:
- 3 <= A.length <= 3000
- 0 <= A[i] <= 100
- 0 <= target <= 300
题目大意 #
这道题是第 15 题的升级版。给出一个数组,要求找到 3 个数相加的和等于 target 的解组合的个数,并且要求 i < j < k。解的组合个数不需要去重,相同数值不同下标算不同解(这里也是和第 15 题的区别)
解题思路 #
这一题大体解法和第 15 题一样的,只不过算所有解组合的时候需要一点排列组合的知识,如果取 3 个一样的数,需要计算 C n 3,去 2 个相同的数字的时候,计算 C n 2,取一个数字就正常计算。最后所有解的个数都加起来就可以了。
代码 #
package leetcode
import (
"sort"
)
func threeSumMulti(A []int, target int) int {
mod := 1000000007
counter := map[int]int{}
for _, value := range A {
counter[value]++
}
uniqNums := []int{}
for key := range counter {
uniqNums = append(uniqNums, key)
}
sort.Ints(uniqNums)
res := 0
for i := 0; i < len(uniqNums); i++ {
ni := counter[uniqNums[i]]
if (uniqNums[i]*3 == target) && counter[uniqNums[i]] >= 3 {
res += ni * (ni - 1) * (ni - 2) / 6
}
for j := i + 1; j < len(uniqNums); j++ {
nj := counter[uniqNums[j]]
if (uniqNums[i]*2+uniqNums[j] == target) && counter[uniqNums[i]] > 1 {
res += ni * (ni - 1) / 2 * nj
}
if (uniqNums[j]*2+uniqNums[i] == target) && counter[uniqNums[j]] > 1 {
res += nj * (nj - 1) / 2 * ni
}
c := target - uniqNums[i] - uniqNums[j]
if c > uniqNums[j] && counter[c] > 0 {
res += ni * nj * counter[c]
}
}
}
return res % mod
}