978. Longest Turbulent Subarray #
题目 #
A subarray A[i], A[i+1], ..., A[j]
of A
is said to be turbulent if and only if:
- For
i <= k < j
,A[k] > A[k+1]
whenk
is odd, andA[k] < A[k+1]
whenk
is even; - OR, for
i <= k < j
,A[k] > A[k+1]
whenk
is even, andA[k] < A[k+1]
whenk
is odd.
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
Return the length of a maximum size turbulent subarray of A.
Example 1:
Input: [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
Example 2:
Input: [4,8,12,16]
Output: 2
Example 3:
Input: [100]
Output: 1
Note:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
题目大意 #
当 A 的子数组 A[i], A[i+1], …, A[j] 满足下列条件时,我们称其为湍流子数组:
若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1]; 或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。 也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
返回 A 的最大湍流子数组的长度。
提示:
- 1 <= A.length <= 40000
- 0 <= A[i] <= 10^9
解题思路 #
- 给出一个数组,要求找出“摆动数组”的最大长度。所谓“摆动数组”的意思是,元素一大一小间隔的。
- 这一题可以用滑动窗口来解答。用相邻元素差的乘积大于零(a ^ b >= 0 说明a b乘积大于零)来判断是否是湍流, 如果是,那么扩大窗口。否则窗口缩小为0,开始新的一个窗口。
代码 #
package leetcode
// 解法一 模拟法
func maxTurbulenceSize(arr []int) int {
inc, dec := 1, 1
maxLen := min(1, len(arr))
for i := 1; i < len(arr); i++ {
if arr[i-1] < arr[i] {
inc = dec + 1
dec = 1
} else if arr[i-1] > arr[i] {
dec = inc + 1
inc = 1
} else {
inc = 1
dec = 1
}
maxLen = max(maxLen, max(inc, dec))
}
return maxLen
}
// 解法二 滑动窗口
func maxTurbulenceSize1(arr []int) int {
var maxLength int
if len(arr) == 2 && arr[0] != arr[1] {
maxLength = 2
} else {
maxLength = 1
}
left := 0
for right := 2; right < len(arr); right++ {
if arr[right] == arr[right-1] {
left = right
} else if (arr[right]-arr[right-1])^(arr[right-1]-arr[right-2]) >= 0 {
left = right - 1
}
maxLength = max(maxLength, right-left+1)
}
return maxLength
}