990. Satisfiability of Equality Equations #
题目 #
Given an array equations of strings that represent relationships between variables, each string equations[i]
has length 4
and takes one of two different forms: "a==b"
or "a!=b"
. Here, a
and b
are lowercase letters (not necessarily different) that represent one-letter variable names.
Return true
if and only if it is possible to assign integers to variable names so as to satisfy all the given equations.
Example 1:
Input: ["a==b","b!=a"]
Output: false
Explanation: If we assign say, a = 1 and b = 1, then the first equation is satisfied, but not the second. There is no way to assign the variables to satisfy both equations.
Example 2:
Input: ["b==a","a==b"]
Output: true
Explanation: We could assign a = 1 and b = 1 to satisfy both equations.
Example 3:
Input: ["a==b","b==c","a==c"]
Output: true
Example 4:
Input: ["a==b","b!=c","c==a"]
Output: false
Example 5:
Input: ["c==c","b==d","x!=z"]
Output: true
Note:
1 <= equations.length <= 500
equations[i].length == 4
equations[i][0]
andequations[i][3]
are lowercase lettersequations[i][1]
is either'='
or'!'
equations[i][2]
is'='
题目大意 #
给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:“a==b” 或 “a!=b”。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。
提示:
- 1 <= equations.length <= 500
- equations[i].length == 4
- equations[i][0] 和 equations[i][3] 是小写字母
- equations[i][1] 要么是 ‘=’,要么是 ‘!’
- equations[i][2] 是 ‘=’
解题思路 #
- 给出一个字符串数组,数组里面给出的是一些字母的关系,只有
'=='
和'! ='
两种关系。问给出的这些关系中是否存在悖论? - 这一题是简单的并查集的问题。先将所有
'=='
关系的字母union()
起来,然后再一一查看'! ='
关系中是否有'=='
关系的组合,如果有,就返回false
,如果遍历完都没有找到,则返回true
。
代码 #
package leetcode
import (
"github.com/halfrost/leetcode-go/template"
)
func equationsPossible(equations []string) bool {
if len(equations) == 0 {
return false
}
uf := template.UnionFind{}
uf.Init(26)
for _, equ := range equations {
if equ[1] == '=' && equ[2] == '=' {
uf.Union(int(equ[0]-'a'), int(equ[3]-'a'))
}
}
for _, equ := range equations {
if equ[1] == '!' && equ[2] == '=' {
if uf.Find(int(equ[0]-'a')) == uf.Find(int(equ[3]-'a')) {
return false
}
}
}
return true
}