1111. Maximum Nesting Depth of Two Valid Parentheses Strings #
题目 #
A string is a valid parentheses string (denoted VPS) if and only if it consists of "("
and ")"
characters only, and:
- It is the empty string, or
- It can be written as
AB
(A
concatenated withB
), whereA
andB
are VPS’s, or - It can be written as
(A)
, whereA
is a VPS.
We can similarly define the nesting depth depth(S)
of any VPS S
as follows:
depth("") = 0
depth(A + B) = max(depth(A), depth(B))
, whereA
andB
are VPS’sdepth("(" + A + ")") = 1 + depth(A)
, whereA
is a VPS.
For example, ""
, "()()"
, and "()(()())"
are VPS’s (with nesting depths 0, 1, and 2), and ")("
and "(()"
are not VPS’s.
Given a VPS seq, split it into two disjoint subsequences A
and B
, such that A
and B
are VPS’s (and A.length + B.length = seq.length
).
Now choose any such A
and B
such that max(depth(A), depth(B))
is the minimum possible value.
Return an answer
array (of length seq.length
) that encodes such a choice of A
and B
: answer[i] = 0
if seq[i]
is part of A
, else answer[i] = 1
. Note that even though multiple answers may exist, you may return any of them.
Example 1:
Input: seq = "(()())"
Output: [0,1,1,1,1,0]
Example 2:
Input: seq = "()(())()"
Output: [0,0,0,1,1,0,1,1]
Constraints:
1 <= seq.size <= 10000
题目大意 #
有效括号字符串 仅由 “(” 和 “)” 构成,并符合下述几个条件之一:
- 空字符串
- 连接,可以记作 AB(A 与 B 连接),其中 A 和 B 都是有效括号字符串
- 嵌套,可以记作 (A),其中 A 是有效括号字符串
类似地,我们可以定义任意有效括号字符串 s 的 嵌套深度 depth(S):
- s 为空时,depth("") = 0
- s 为 A 与 B 连接时,depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是有效括号字符串
- s 为嵌套情况,depth("(” + A + “)") = 1 + depth(A),其中 A 是有效括号字符串
例如:"","()()",和 “()(()())” 都是有效括号字符串,嵌套深度分别为 0,1,2,而 “)(” 和 “(()” 都不是有效括号字符串。
给你一个有效括号字符串 seq,将其分成两个不相交的子序列 A 和 B,且 A 和 B 满足有效括号字符串的定义(注意:A.length + B.length = seq.length)。
现在,你需要从中选出 任意 一组有效括号字符串 A 和 B,使 max(depth(A), depth(B)) 的可能取值最小。
返回长度为 seq.length 答案数组 answer ,选择 A 还是 B 的编码规则是:如果 seq[i] 是 A 的一部分,那么 answer[i] = 0。否则,answer[i] = 1。即便有多个满足要求的答案存在,你也只需返回 一个。
解题思路 #
- 给出一个括号字符串。选出 A 部分和 B 部分,使得
max(depth(A), depth(B))
值最小。在最终的数组中输出 0 和 1,0 标识是 A 部分,1 标识是 B 部分。 - 这一题想要
max(depth(A), depth(B))
值最小,可以使用贪心思想。如果 A 部分和 B 部分都尽快括号匹配,不深层次嵌套,那么总的层次就会变小。只要让嵌套的括号中属于 A 的和属于 B 的间隔排列即可。例如:“(((())))
”,上面的字符串的嵌套深度是 4,按照上述的贪心思想,则标记为 0101 1010。 - 这一题也可以用二分的思想来解答。把深度平分给 A 部分和 B 部分。
- 第一次遍历,先计算最大深度
- 第二次遍历,把深度小于等于最大深度一半的括号标记为 0(给 A 部分),否则标记为 1(给 B 部分)
代码 #
package leetcode
// 解法一 二分思想
func maxDepthAfterSplit(seq string) []int {
stack, maxDepth, res := 0, 0, []int{}
for _, v := range seq {
if v == '(' {
stack++
maxDepth = max(stack, maxDepth)
} else {
stack--
}
}
stack = 0
for i := 0; i < len(seq); i++ {
if seq[i] == '(' {
stack++
if stack <= maxDepth/2 {
res = append(res, 0)
} else {
res = append(res, 1)
}
} else {
if stack <= maxDepth/2 {
res = append(res, 0)
} else {
res = append(res, 1)
}
stack--
}
}
return res
}
// 解法二 模拟
func maxDepthAfterSplit1(seq string) []int {
stack, top, res := make([]int, len(seq)), -1, make([]int, len(seq))
for i, r := range seq {
if r == ')' {
res[i] = res[stack[top]]
top--
continue
}
top++
stack[top] = i
res[i] = top % 2
}
return res
}