1175. Prime Arrangements #
题目 #
Return the number of permutations of 1 to n
so that prime numbers are at prime indices (1-indexed.)
(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)
Since the answer may be large, return the answer modulo 10^9 + 7
.
Example 1:
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.
Example 2:
Input: n = 100
Output: 682289015
Constraints:
1 <= n <= 100
题目大意 #
请你帮忙给从 1 到 n 的数设计排列方案,使得所有的「质数」都应该被放在「质数索引」(索引从 1 开始)上;你需要返回可能的方案总数。让我们一起来回顾一下「质数」:质数一定是大于 1 的,并且不能用两个小于它的正整数的乘积来表示。由于答案可能会很大,所以请你返回答案 模 mod 10^9 + 7 之后的结果即可。
提示:
- 1 <= n <= 100
解题思路 #
- 给出一个数 n,要求在 1-n 这 n 个数中,素数在素数索引下标位置上的全排列个数。
- 由于这一题的
n
小于 100,所以可以用打表法。先把小于 100 个素数都打表打出来。然后对小于 n 的素数进行全排列,即 n!,然后再对剩下来的非素数进行全排列,即 (n-c)!。两个的乘积即为最终答案。
代码 #
package leetcode
import "sort"
var primes = []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}
func numPrimeArrangements(n int) int {
primeCount := sort.Search(25, func(i int) bool { return primes[i] > n })
return factorial(primeCount) * factorial(n-primeCount) % 1000000007
}
func factorial(n int) int {
if n == 1 || n == 0 {
return 1
}
return n * factorial(n-1) % 1000000007
}