1260. Shift 2D Grid #
题目 #
Given a 2D grid
of size m x n
and an integer k
. You need to shift the grid
k
times.
In one shift operation:
- Element at
grid[i][j]
moves togrid[i][j + 1]
. - Element at
grid[i][n - 1]
moves togrid[i + 1][0]
. - Element at
grid[m - 1][n - 1]
moves togrid[0][0]
.
Return the 2D grid after applying shift operation k
times.
Example 1:
Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1
Output: [[9,1,2],[3,4,5],[6,7,8]]
Example 2:
Input: grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
Output: [[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]
Example 3:
Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9
Output: [[1,2,3],[4,5,6],[7,8,9]]
Constraints:
m == grid.length
n == grid[i].length
1 <= m <= 50
1 <= n <= 50
-1000 <= grid[i][j] <= 1000
0 <= k <= 100
题目大意 #
给你一个 m 行 n 列的二维网格 grid 和一个整数 k。你需要将 grid 迁移 k 次。每次「迁移」操作将会引发下述活动:
- 位于 grid[i][j] 的元素将会移动到 grid[i][j + 1]。
- 位于 grid[i][n - 1] 的元素将会移动到 grid[i + 1][0]。
- 位于 grid[m - 1][n - 1] 的元素将会移动到 grid[0][0]。
请你返回 k 次迁移操作后最终得到的 二维网格。
解题思路 #
- 给一个矩阵和一个移动步数 k,要求把矩阵每个元素往后移动 k 步,最后的元素移动头部,循环移动,最后输出移动结束的矩阵。
- 简单题,按照题意循环移动即可,注意判断边界情况。
代码 #
package leetcode
func shiftGrid(grid [][]int, k int) [][]int {
x, y := len(grid[0]), len(grid)
newGrid := make([][]int, y)
for i := 0; i < y; i++ {
newGrid[i] = make([]int, x)
}
for i := 0; i < y; i++ {
for j := 0; j < x; j++ {
ny := (k / x) + i
if (j + (k % x)) >= x {
ny++
}
newGrid[ny%y][(j+(k%x))%x] = grid[i][j]
}
}
return newGrid
}