1310. X O R Queries of a Subarray

1310. XOR Queries of a Subarray #

题目 #

Given the array arr of positive integers and the array queries where queries[i] = [Li,Ri], for each query i compute the XOR of elements from Li to Ri (that is, arr[Li]xor arr[Li+1]xor ...xor arr[Ri]). Return an array containing the result for the given queries.

Example 1:

Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
Output: [2,7,14,8]
Explanation:
The binary representation of the elements in the array are:
1 = 0001
3 = 0011
4 = 0100
8 = 1000
The XOR values for queries are:
[0,1] = 1 xor 3 = 2
[1,2] = 3 xor 4 = 7
[0,3] = 1 xor 3 xor 4 xor 8 = 14
[3,3] = 8

Example 2:

Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
Output: [8,0,4,4]

Constraints:

  • 1 <= arr.length <= 3 * 10^4
  • 1 <= arr[i] <= 10^9
  • 1 <= queries.length <= 3 * 10^4
  • queries[i].length == 2
  • 0 <= queries[i][0] <= queries[i][1] < arr.length

题目大意 #

有一个正整数数组 arr,现给你一个对应的查询数组 queries,其中 queries[i] = [Li, Ri]。对于每个查询 i,请你计算从 Li 到 Ri 的 XOR 值(即 arr[Li] xor arr[Li+1] xor … xor arr[Ri])作为本次查询的结果。并返回一个包含给定查询 queries 所有结果的数组。

解题思路 #

  • 此题求区间异或,很容易让人联想到区间求和。区间求和利用前缀和,可以使得 query 从 O(n) 降为 O(1)。区间异或能否也用类似前缀和的思想呢?答案是肯定的。利用异或的两个性质,x ^ x = 0,x ^ 0 = x。那么有:(由于 LaTeX 中异或符号 ^ 是特殊字符,笔者用 \( \oplus \) 代替异或)

    \[ \begin{aligned}Query(left,right) &=arr[left] \oplus \cdots  \oplus arr[right]\\&=(arr[0] \oplus \cdots  \oplus arr[left-1]) \oplus (arr[0] \oplus \cdots  \oplus arr[left-1]) \oplus (arr[left] \oplus \cdots  \oplus arr[right])\\ &=(arr[0] \oplus \cdots  \oplus arr[left-1]) \oplus (arr[0] \oplus \cdots  \oplus arr[right])\\ &=xors[left] \oplus xors[right+1]\\ \end{aligned} \]

    按照这个思路解题,便可以将 query 从 O(n) 降为 O(1),总的时间复杂度为 O(n)。

代码 #

package leetcode

func xorQueries(arr []int, queries [][]int) []int {
	xors := make([]int, len(arr))
	xors[0] = arr[0]
	for i := 1; i < len(arr); i++ {
		xors[i] = arr[i] ^ xors[i-1]
	}
	res := make([]int, len(queries))
	for i, q := range queries {
		res[i] = xors[q[1]]
		if q[0] > 0 {
			res[i] ^= xors[q[0]-1]
		}
	}
	return res
}

⬅️上一页

下一页➡️

Calendar Jun 16, 2021
Edit Edit this page
本站总访问量:  次 您是本站第  位访问者