1674. Minimum Moves to Make Array Complementary #
题目 #
You are given an integer array nums
of even length n
and an integer limit
. In one move, you can replace any integer from nums
with another integer between 1
and limit
, inclusive.
The array nums
is complementary if for all indices i
(0-indexed), nums[i] + nums[n - 1 - i]
equals the same number. For example, the array [1,2,3,4]
is complementary because for all indices i
, nums[i] + nums[n - 1 - i] = 5
.
Return the minimum number of moves required to make nums
complementary.
Example 1:
Input: nums = [1,2,4,3], limit = 4
Output: 1
Explanation: In 1 move, you can change nums to [1,2,2,3] (underlined elements are changed).
nums[0] + nums[3] = 1 + 3 = 4.
nums[1] + nums[2] = 2 + 2 = 4.
nums[2] + nums[1] = 2 + 2 = 4.
nums[3] + nums[0] = 3 + 1 = 4.
Therefore, nums[i] + nums[n-1-i] = 4 for every i, so nums is complementary.
Example 2:
Input: nums = [1,2,2,1], limit = 2
Output: 2
Explanation: In 2 moves, you can change nums to [2,2,2,2]. You cannot change any number to 3 since 3 > limit.
Example 3:
Input: nums = [1,2,1,2], limit = 2
Output: 0
Explanation: nums is already complementary.
Constraints:
n == nums.length
2 <= n <= 105
1 <= nums[i] <= limit <= 105
n
is even.
题目大意 #
给你一个长度为 偶数 n 的整数数组 nums 和一个整数 limit 。每一次操作,你可以将 nums 中的任何整数替换为 1 到 limit 之间的另一个整数。
如果对于所有下标 i(下标从 0 开始),nums[i] + nums[n - 1 - i] 都等于同一个数,则数组 nums 是 互补的 。例如,数组 [1,2,3,4] 是互补的,因为对于所有下标 i ,nums[i] + nums[n - 1 - i] = 5 。
返回使数组 互补 的 最少 操作次数。
解题思路 #
- 这一题考察的是差分数组。通过分析题意,可以得出,针对每一个
sum
的取值范围是[2, 2* limt]
,定义a = min(nums[i], nums[n - i - 1])
,b = max(nums[i], nums[n - i - 1])
,在这个区间内,又可以细分成 5 个区间,[2, a + 1)
,[a + 1, a + b)
,[a + b + 1, a + b + 1)
,[a + b + 1, b + limit + 1)
,[b + limit + 1, 2 * limit)
,在这 5 个区间内使得数组互补的最小操作次数分别是2(减少 a, 减少 b)
,1(减少 b)
,0(不用操作)
,1(增大 a)
,+2(增大 a, 增大 b)
,换个表达方式,按照扫描线从左往右扫描,在这 5 个区间内使得数组互补的最小操作次数叠加变化分别是+2(减少 a, 减少 b)
,-1(减少 a)
,-1(不用操作)
,+1(增大 a)
,+1(增大 a, 增大 b)
,利用这前后两个区间的关系,就可以构造一个差分数组。差分数组反应的是前后两者的关系。如果想求得 0 ~ n 的总关系,只需要求一次前缀和即可。 - 这道题要求输出最少的操作次数,所以利用差分数组 + 前缀和,累加前缀和的同时维护最小值。从左往右扫描完一遍以后,输出最小值即可。
代码 #
package leetcode
func minMoves(nums []int, limit int) int {
diff := make([]int, limit*2+2) // nums[i] <= limit, b+limit+1 is maximum limit+limit+1
for j := 0; j < len(nums)/2; j++ {
a, b := min(nums[j], nums[len(nums)-j-1]), max(nums[j], nums[len(nums)-j-1])
// using prefix sum: most interesting point, and is the key to reduce complexity
diff[2] += 2
diff[a+1]--
diff[a+b]--
diff[a+b+1]++
diff[b+limit+1]++
}
cur, res := 0, len(nums)
for i := 2; i <= 2*limit; i++ {
cur += diff[i]
res = min(res, cur)
}
return res
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}