1685. Sum of Absolute Differences in a Sorted Array #
题目 #
You are given an integer array nums sorted in non-decreasing order.
Build and return an integer array result with the same length as nums such that result[i] is equal to the summation of absolute differences between nums[i] and all the other elements in the array.
In other words, result[i] is equal to sum(|nums[i]-nums[j]|) where 0 <= j < nums.length and j != i (0-indexed).
Example 1:
Input: nums = [2,3,5]
Output: [4,3,5]
Explanation: Assuming the arrays are 0-indexed, then
result[0] = |2-2| + |2-3| + |2-5| = 0 + 1 + 3 = 4,
result[1] = |3-2| + |3-3| + |3-5| = 1 + 0 + 2 = 3,
result[2] = |5-2| + |5-3| + |5-5| = 3 + 2 + 0 = 5.
Example 2:
Input: nums = [1,4,6,8,10]
Output: [24,15,13,15,21]
Constraints:
2 <= nums.length <= 1051 <= nums[i] <= nums[i + 1] <= 104
题目大意 #
给你一个 非递减 有序整数数组 nums 。请你建立并返回一个整数数组 result,它跟 nums 长度相同,且result[i] 等于 nums[i] 与数组中所有其他元素差的绝对值之和。换句话说, result[i] 等于 sum(|nums[i]-nums[j]|) ,其中 0 <= j < nums.length 且 j != i (下标从 0 开始)。
解题思路 #
- 利用前缀和思路解题。题目中说明了是有序数组,所以在计算绝对值的时候可以拆开绝对值符号。假设要计算当前
result[i],以i为界,把原数组nums分成了 3 段。nums[0 ~ i-1]和nums[i+1 ~ n],前面一段nums[0 ~ i-1]中的每个元素都比nums[i]小,拆掉绝对值以后,sum(|nums[i]-nums[j]|) = nums[i] * i - prefixSum[0 ~ i-1],后面一段nums[i+1 ~ n]中的每个元素都比nums[i]大,拆掉绝对值以后,sum(|nums[i]-nums[j]|) = prefixSum[i+1 ~ n] - nums[i] * (n - 1 - i)。特殊的情况,i = 0和i = n的情况特殊处理一下就行。
代码 #
package leetcode
//解法一 优化版 prefixSum + sufixSum
func getSumAbsoluteDifferences(nums []int) []int {
size := len(nums)
sufixSum := make([]int, size)
sufixSum[size-1] = nums[size-1]
for i := size - 2; i >= 0; i-- {
sufixSum[i] = sufixSum[i+1] + nums[i]
}
ans, preSum := make([]int, size), 0
for i := 0; i < size; i++ {
// 后面可以加到的值
res, sum := 0, sufixSum[i]-nums[i]
res += (sum - (size-i-1)*nums[i])
// 前面可以加到的值
res += (i*nums[i] - preSum)
ans[i] = res
preSum += nums[i]
}
return ans
}
// 解法二 prefixSum
func getSumAbsoluteDifferences1(nums []int) []int {
preSum, res, sum := []int{}, []int{}, nums[0]
preSum = append(preSum, nums[0])
for i := 1; i < len(nums); i++ {
sum += nums[i]
preSum = append(preSum, sum)
}
for i := 0; i < len(nums); i++ {
if i == 0 {
res = append(res, preSum[len(nums)-1]-preSum[0]-nums[i]*(len(nums)-1))
} else if i > 0 && i < len(nums)-1 {
res = append(res, preSum[len(nums)-1]-preSum[i]-preSum[i-1]+nums[i]*i-nums[i]*(len(nums)-1-i))
} else {
res = append(res, nums[i]*len(nums)-preSum[len(nums)-1])
}
}
return res
}