1725. Number Of Rectangles That Can Form The Largest Square #
题目 #
You are given an array rectangles
where rectangles[i] = [li, wi]
represents the ith
rectangle of length li
and width wi
.
You can cut the ith
rectangle to form a square with a side length of k
if both k <= li
and k <= wi
. For example, if you have a rectangle [4,6]
, you can cut it to get a square with a side length of at most 4
.
Let maxLen
be the side length of the largest square you can obtain from any of the given rectangles.
Return the number of rectangles that can make a square with a side length of maxLen
.
Example 1:
Input: rectangles = [[5,8],[3,9],[5,12],[16,5]]
Output: 3
Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5].
The largest possible square is of length 5, and you can get it out of 3 rectangles.
Example 2:
Input: rectangles = [[2,3],[3,7],[4,3],[3,7]]
Output: 3
Constraints:
1 <= rectangles.length <= 1000
rectangles[i].length == 2
1 <= li, wi <= 10^9
li != wi
题目大意 #
给你一个数组 rectangles ,其中 rectangles[i] = [li, wi] 表示第 i 个矩形的长度为 li 、宽度为 wi 。如果存在 k 同时满足 k <= li 和 k <= wi ,就可以将第 i 个矩形切成边长为 k 的正方形。例如,矩形 [4,6] 可以切成边长最大为 4 的正方形。设 maxLen 为可以从矩形数组 rectangles 切分得到的 最大正方形 的边长。返回可以切出边长为 maxLen 的正方形的矩形 数目 。
解题思路 #
- 简单题。扫描数组中的每一个矩形,先找到边长较小的那条边,作为正方形的边长。扫描过程中动态更新最大的正方形边长,并累加计数。循环一遍结束,输出最终计数值即可。
代码 #
package leetcode
func countGoodRectangles(rectangles [][]int) int {
minLength, count := 0, 0
for i, _ := range rectangles {
minSide := 0
if rectangles[i][0] <= rectangles[i][1] {
minSide = rectangles[i][0]
} else {
minSide = rectangles[i][1]
}
if minSide > minLength {
minLength = minSide
count = 1
} else if minSide == minLength {
count++
}
}
return count
}