1734. Decode XORed Permutation #
题目 #
There is an integer array perm
that is a permutation of the first n
positive integers, where n
is always odd.
It was encoded into another integer array encoded
of length n - 1
, such that encoded[i] = perm[i] XOR perm[i + 1]
. For example, if perm = [1,3,2]
, then encoded = [2,1]
.
Given the encoded
array, return the original array perm
. It is guaranteed that the answer exists and is unique.
Example 1:
Input: encoded = [3,1]
Output: [1,2,3]
Explanation: If perm = [1,2,3], then encoded = [1 XOR 2,2 XOR 3] = [3,1]
Example 2:
Input: encoded = [6,5,4,6]
Output: [2,4,1,5,3]
Constraints:
3 <= n < 10^5
n
is odd.encoded.length == n - 1
题目大意 #
给你一个整数数组 perm ,它是前 n 个正整数的排列,且 n 是个奇数 。它被加密成另一个长度为 n - 1 的整数数组 encoded ,满足 encoded[i] = perm[i] XOR perm[i + 1] 。比方说,如果 perm = [1,3,2] ,那么 encoded = [2,1] 。给你 encoded 数组,请你返回原始数组 perm 。题目保证答案存在且唯一。
解题思路 #
这一题与第 136 题和第 137 题思路类似,借用
\[ \begin{aligned}odd &= encoded[1] + encoded[3] + ... + encoded[n-1]\\&= (perm[1] \,\, XOR \,\, perm[2]) + (perm[3] \,\, XOR \,\, perm[4]) + ... + (perm[n-1] \,\, XOR \,\, perm[n])\end{aligned} \]x ^ x = 0
这个性质解题。依题意,原数组 perm 是 n 个正整数,即取值在[1,n+1]
区间内,但是排列顺序未知。可以考虑先将[1,n+1]
区间内的所有数异或得到 total。再将 encoded 数组中奇数下标的元素异或得到 odd:total 是 n 个正整数异或全集,odd 是
\[ \begin{aligned}encoded[0] &= perm[0] \,\, XOR \,\, perm[1]\\perm[0] \,\, XOR \,\, encoded[0] &= perm[0] \,\, XOR \,\, perm[0] \,\, XOR \,\, perm[1] = perm[1]\\perm[1] \,\, XOR \,\, encoded[1] &= perm[1] \,\, XOR \,\, perm[1] \,\, XOR \,\, perm[2] = perm[2]\\...\\perm[n-1] \,\, XOR \,\, encoded[n-1] &= perm[n-1] \,\, XOR \,\, perm[n-1] \,\, XOR \,\, perm[n] = perm[n]\\\end{aligned} \]n-1
个正整数异或集。两者异或total ^ odd
得到的值必定是 perm[0],因为x ^ x = 0
,那么重复出现的元素被异或以后消失了。算出 perm[0] 就好办了。依次类推,便可以推出原数组 perm 中的所有数。
代码 #
package leetcode
func decode(encoded []int) []int {
n, total, odd := len(encoded), 0, 0
for i := 1; i <= n+1; i++ {
total ^= i
}
for i := 1; i < n; i += 2 {
odd ^= encoded[i]
}
perm := make([]int, n+1)
perm[0] = total ^ odd
for i, v := range encoded {
perm[i+1] = perm[i] ^ v
}
return perm
}