Backtracking #
- 排列问题 Permutations。第 46 题,第 47 题。第 60 题,第 526 题,第 996 题。
- 组合问题 Combination。第 39 题,第 40 题,第 77 题,第 216 题。
- 排列和组合杂交问题。第 1079 题。
- N 皇后终极解法(二进制解法)。第 51 题,第 52 题。
- 数独问题。第 37 题。
- 四个方向搜索。第 79 题,第 212 题,第 980 题。
- 子集合问题。第 78 题,第 90 题。
- Trie。第 208 题,第 211 题。
- BFS 优化。第 126 题,第 127 题。
- DFS 模板。(只是一个例子,不对应任何题)
func combinationSum2(candidates []int, target int) [][]int {
if len(candidates) == 0 {
return [][]int{}
}
c, res := []int{}, [][]int{}
sort.Ints(candidates)
findcombinationSum2(candidates, target, 0, c, &res)
return res
}
func findcombinationSum2(nums []int, target, index int, c []int, res *[][]int) {
if target == 0 {
b := make([]int, len(c))
copy(b, c)
*res = append(*res, b)
return
}
for i := index; i < len(nums); i++ {
if i > index && nums[i] == nums[i-1] { // 这里是去重的关键逻辑
continue
}
if target >= nums[i] {
c = append(c, nums[i])
findcombinationSum2(nums, target-nums[i], i+1, c, res)
c = c[:len(c)-1]
}
}
}
- BFS 模板。(只是一个例子,不对应任何题)
func updateMatrix_BFS(matrix [][]int) [][]int {
res := make([][]int, len(matrix))
if len(matrix) == 0 || len(matrix[0]) == 0 {
return res
}
queue := make([][]int, 0)
for i, _ := range matrix {
res[i] = make([]int, len(matrix[0]))
for j, _ := range res[i] {
if matrix[i][j] == 0 {
res[i][j] = -1
queue = append(queue, []int{i, j})
}
}
}
level := 1
for len(queue) > 0 {
size := len(queue)
for size > 0 {
size -= 1
node := queue[0]
queue = queue[1:]
i, j := node[0], node[1]
for _, direction := range [][]int{{-1, 0}, {1, 0}, {0, 1}, {0, -1}} {
x := i + direction[0]
y := j + direction[1]
if x < 0 || x >= len(matrix) || y < 0 || y >= len(matrix[0]) || res[x][y] < 0 || res[x][y] > 0 {
continue
}
res[x][y] = level
queue = append(queue, []int{x, y})
}
}
level++
}
for i, row := range res {
for j, cell := range row {
if cell == -1 {
res[i][j] = 0
}
}
}
return res
}
No. | Title | Solution | Difficulty | TimeComplexity | SpaceComplexity | Favorite | Acceptance |
---|---|---|---|---|---|---|---|
0017 | Letter Combinations of a Phone Number | Go | Medium | O(log n) | O(1) | 56.6% | |
0022 | Generate Parentheses | Go | Medium | O(log n) | O(1) | 72.5% | |
0037 | Sudoku Solver | Go | Hard | O(n^2) | O(n^2) | ❤️ | 57.7% |
0039 | Combination Sum | Go | Medium | O(n log n) | O(n) | 68.6% | |
0040 | Combination Sum II | Go | Medium | O(n log n) | O(n) | 53.4% | |
0046 | Permutations | Go | Medium | O(n) | O(n) | ❤️ | 75.7% |
0047 | Permutations II | Go | Medium | O(n^2) | O(n) | ❤️ | 57.4% |
0051 | N-Queens | Go | Hard | O(n!) | O(n) | ❤️ | 64.2% |
0052 | N-Queens II | Go | Hard | O(n!) | O(n) | ❤️ | 71.6% |
0077 | Combinations | Go | Medium | O(n) | O(n) | ❤️ | 67.0% |
0078 | Subsets | Go | Medium | O(n^2) | O(n) | ❤️ | 74.9% |
0079 | Word Search | Go | Medium | O(n^2) | O(n^2) | ❤️ | 40.2% |
0089 | Gray Code | Go | Medium | O(n) | O(1) | 57.2% | |
0090 | Subsets II | Go | Medium | O(n^2) | O(n) | ❤️ | 55.9% |
0093 | Restore IP Addresses | Go | Medium | O(n) | O(n) | ❤️ | 47.4% |
0095 | Unique Binary Search Trees II | Go | Medium | 52.4% | |||
0113 | Path Sum II | Go | Medium | 57.1% | |||
0126 | Word Ladder II | Go | Hard | O(n) | O(n^2) | ❤️ | 27.5% |
0131 | Palindrome Partitioning | Go | Medium | O(n) | O(n^2) | ❤️ | 64.9% |
0212 | Word Search II | Go | Hard | O(n^2) | O(n^2) | ❤️ | 36.4% |
0216 | Combination Sum III | Go | Medium | O(n) | O(1) | ❤️ | 67.6% |
0257 | Binary Tree Paths | Go | Easy | 61.4% | |||
0301 | Remove Invalid Parentheses | Go | Hard | 47.2% | |||
0306 | Additive Number | Go | Medium | O(n^2) | O(1) | ❤️ | 31.1% |
0357 | Count Numbers with Unique Digits | Go | Medium | O(1) | O(1) | 51.9% | |
0401 | Binary Watch | Go | Easy | O(1) | O(1) | 52.3% | |
0473 | Matchsticks to Square | Go | Medium | 40.2% | |||
0491 | Non-decreasing Subsequences | Go | Medium | 60.2% | |||
0494 | Target Sum | Go | Medium | 45.7% | |||
0526 | Beautiful Arrangement | Go | Medium | O(n^2) | O(1) | ❤️ | 64.4% |
0638 | Shopping Offers | Go | Medium | 53.3% | |||
0784 | Letter Case Permutation | Go | Medium | O(n) | O(n) | 73.8% | |
0816 | Ambiguous Coordinates | Go | Medium | 56.4% | |||
0842 | Split Array into Fibonacci Sequence | Go | Medium | O(n^2) | O(1) | ❤️ | 38.4% |
0980 | Unique Paths III | Go | Hard | O(n log n) | O(n) | 81.7% | |
0996 | Number of Squareful Arrays | Go | Hard | O(n log n) | O(n) | 49.2% | |
1079 | Letter Tile Possibilities | Go | Medium | O(n^2) | O(1) | ❤️ | 76.0% |
1239 | Maximum Length of a Concatenated String with Unique Characters | Go | Medium | 52.2% | |||
1655 | Distribute Repeating Integers | Go | Hard | 39.3% | |||
———— | ——————————————————- | ——- | —————- | ————— | ————- | ————- | ————- |